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Abstract: Biochemical oxygen demand (BOD) is a variable that is missing or inaccurate in many water quality data sets because of diffi-
culties in diluting highly polluted water samples. Machine learning algorithms, particularly support vector regression (SVR), are useful to
build regression models to fill gaps in these data sets. The SVR can underpredict extreme-high values when they are few in number and
underrepresented. This paper evaluates two methods, bootstrapping and data expansion, to mitigate the problem by increasing the proportion
of extreme-high BOD in the data set before training the gap-filling model. Both methods were tested on the water quality data of Yuen Long
Creek, Hong Kong, for the years 2000–2014. Both methods were effective in mitigating systematic underprediction and reducing their
residual errors when the proportion of extreme-high values in the data set were increased from 3 to 30–40%. Both methods were useful
for gap filling on BOD time series because extreme-high values are often the ones missing or inaccurate when highly polluted samples are
diluted. DOI: 10.1061/(ASCE)EE.1943-7870.0001243. © 2017 American Society of Civil Engineers.

Introduction

Biochemical oxygen demand (BOD), a widely used criterion for
water quality assessment, is the measure of the quantity of dis-
solved oxygen (DO) used by microorganisms to decompose or-
ganic matter in water (Sawyer et al. 2002). It is fundamentally an
indicator of organic pollution. Operationally, BOD is determined as
the DO concentration absorbed by a sample maintained at temper-
ature of 20°C for a fixed period (normally five days), expressed in
mg L−1, before nitrogen matter begins decomposing (Nagel et al.
1992; Sawyer et al. 2002). Occasionally, grossly polluted water
samples with low DO concentration (<6 mgL−1) must be diluted
with specific amounts of water and nutrients before testing (Chiang
et al. 2004). The addition of water maintains an adequate oxygen
supply for complete decomposition to occur. The addition of nu-
trients maintains the bacterial decomposition rate. Because it is
impossible to know the actual BOD beforehand, multiple samples
of different dilution amounts have to be prepared according to a
predicted BOD determined by the laboratory analyst (Sawyer et al.
2002).

Measurements of BOD are deemed inaccurate if the final DO
concentration after the test falls below 1 mgL−1 and is at least
2 mgL−1 lower than the initial DO concentration (Rice et al.
2012). Inaccurate measurements frequently occur during the dilu-
tion process for several reasons, such as incorrect laboratory tech-
nique, unacceptable dilution water quality, and toxicity (Chiang
et al. 2004). For example, ∼10% of the BODs in the 2000–2014
water quality data set for Yuen Long Creek (Hong Kong), which are
marked by blanks and inequality signs, and those in the data set
studied in this paper are unreliable in part because of inaccurate

dilution. In general, incomplete data sets (data gaps) pose problems
for time-based monitoring studies aimed at improving river water
quality management or identifying point sources. Therefore, new or
improved techniques to fill gaps or “correct” inaccurate values are
potentially quite valuable.

The BOD is influenced by several physical (e.g., pH, temper-
ature, flow rate) and chemical/biological (e.g., anions, bacteria,
metals) water quality variables (Džeroski et al. 2000; Singh et al.
2009; Udeigwe and Wang 2010). The (often) nonlinearity of
the relationships among these parameters necessitates the use of
sophisticated methods to fill gaps and to correct values. Machine
learning approaches involving support vector regression (SVR), for
example, may have superior predictive capability over simpler,
traditional regression methods because they can model nonlinear
relationships between variables. These relationships cannot be cap-
tured by linear regression methods (Singh et al. 2009; Lima et al.
2015). SVR adopts a kernel-based approach that can simultane-
ously reduce model dimensions and minimize prediction errors.
It has been used to produce robust regression models for BOD pre-
diction (e.g., Noori et al. 2012, 2015).

In some instances, the performance of SVR may be reduced by
the systematic underprediction of extreme-high dependent values in
a data set. This paper defines the problem of systematic underpre-
diction as extreme-high values being consistently underestimated
with a large negative bias, but the mean residual error of nonext-
reme values is near zero and they are not affected by any systematic
artifact. In the case of the 2000–2014 data set for Yuen Long Creek,
extreme-high BODs are subject to underprediction. Inherently,
the systematic underprediction results from an SVR attempting to
minimize both prediction errors and model complexity (Balfer and
Bajorath 2015). As extreme-high values often represent only a small
proportion of the data set, the SVR will algorithmically tolerate pre-
diction errors in an effort to derive a sufficiently complex model that
provides accurate predictions for the majority of the data—that is,
the nonextreme values. The problem of systematic underprediction
can be relevant to other machine learning and traditional regression
techniques, but this paper limits the discussion to the SVR.

In the context of BOD prediction, the accurate prediction of ex-
treme-high values is important because (1) they are associated with
high levels of pollution and (2) they are the values most likely to
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incur errors during dilution. Such systematic underprediction of ex-
treme-high values has been reported in some SVR modeling liter-
ature, although ways to correct the underprediction issue have yet
to be suggested. For instance, Garsole and Rajurkar (2015) and
Granata et al. (2016) identified that the SVR tends to underpredict
peak hydrological discharges. A pharmaceutical modeling study
by Balfer and Bajorath (2015) noted that the SVR underpredicted
the potency value of highly potent compounds. One approach to
resolve systematic underprediction is to increase the proportion
of extreme-high values in the data set prior to building the model.
This can be done by replicating extreme-high values already in
the data set. This approach has not been evaluated in any literature
on SVR or other regression techniques. This paper evaluates the
effectiveness of two novel replication methods based on bootstrap-
ping and data expansion to the SVR modeling of the 2000–2014
BOD times series for Yuen Long Creek, Hong Kong’s most
polluted river (Environmental Protection Department of Hong
Kong 2014).

Material and Methods

Study River

The Yuen Long Creek is situated in subtropical Hong Kong. It runs
north from the central hills of New Territories occupied by agricul-
tural zones and across urban Yuen Long Town before flowing into
Shenzhen Bay (Fig. 1). It is ∼60 km long, and its catchment basin
covers ∼27 km2. As far back as the 1990s, pollutants from the river
flowing to its mouth at Shenzhen Bay have contaminated the waters

of the bay (Qiu 1999). As of 2014, it receives the poorest water
quality index grading among all rivers in Hong Kong. Pollutant
levels tend to peak during northern hemisphere winter months
when discharge and rainfall are low (Qiu 1999). The major pollu-
tion sources are unregulated discharges from livestock farms
and untreated sewage from urban areas within the basin (Environ-
mental Protection Department of Hong Kong 2007). The Environ-
mental Protection Department of Hong Kong (EPDHK) and the
government implemented various laws and built sewage infrastruc-
tures for villages to control the pollutant loadings of Hong Kong’s
rivers and to improve long-term water quality (Environmental Pro-
tection Department of Hong Kong 2014). Of the BOD time series at
four monitoring points in Yuen Long Creek, all but YL4 recorded
improved BODs after 2008 (see the Appendix).

Material

The water quality data considered in this study were collected
by the EPDHK once per month at four monitoring points (YL1,
YL2, YL3, and YL4; Fig. 1), situated at tributaries of the Yuen
Long Creek, during the period extending from January 2000 to
December 2014. The Yuen Long Creek is part of the Deep Bay
water control zone at the northwestern part of New Territories.
Forty-one water quality variables including BOD are available
(Table 1). According to the EPDHK (2014), the physical/chemical
properties (temperature, conductivity, flow, etc.) were measured on
site using a water quality data logger and an electromagnetic flow-
meter. The rest of the water quality parameters related to pollutants
(solids, aggregate organics, bacteria, nutrients, and metals) were
measured using various in-house pollutant measurement equipment

YL2
YL1

YL4
YL3

0 1 2 30.5
Kilometers

Fig. 1. Yuen Long Creek basin; inset map shows the basin’s location in Hong Kong, with the river indicated by a dashed line and the four monitoring
points indicated by black dots
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in the EPDHK laboratory. Further details on the equipment used
can be found in EPDHK (2014). In this paper, BOD is regressed
against 40 other variables.

Site YL2 has the lowest mean BOD (12 mgL−1) of all monitor-
ing points (Table 1). Site YL4 has the highest mean (91 mg L−1)
and the largest range (5–500 mgL−1). Sites YL1 and YL3 have
intermediate means (35 and 57 mgL−1 respectively) and relatively
large ranges on the order of <5 to ≥ 300 mgL−1. Despite some
differences in mean BOD, the data from all monitoring stations are
combined in this analysis to form one large data set with 658 in-
stances. The rationale for combination is to create more data for
training of the models in order to reduce model overfitting.

The missing and inaccurate BODs at all monitoring points are
mainly found in the years 2000–2005 (see the Appendix); these are
the values this paper attempts to fill. The absence of missing and
inaccurate BODs after 2005 perhaps suggests a recent improvement
in BOD testing procedures that mitigates the problem of erro-
neous BOD test results. Nevertheless, it is important to correct the
older data to facilitate studies investigating water quality changes
over time.

Support Vector Regression

This section briefly derives the SVR function, which is devel-
oped by Vapnik (1995). Detailed mathematical treatment of
SVR can be found in the literature by Vapnik (1995) and Smola
and Scholkopf (2004). Basically, the SVR maps the training set
fx1;O1Þ; : : : ; ðxN ;ONÞg ⊂ X ×R nonlinearly from the original
input space X to a higher dimensional feature space F in order
to perform the linear separation that solves the regression problem.
The SVR function is given by the following:

fðxÞ ¼ w · φðxÞ þ b with w ∈ X ; b ∈ R ð1Þ
where φðxÞ = nonlinear mapping function that transforms the input
data from X to F ; w = weight vector; and b = bias term. The aim is
to establish Eq. (1) such that the linear separation can tolerate up to
a fixed error ε while being as flat as possible such that kwk is mini-
mized. With the introduction of slack variables ξ and ξ�, this can be
seen as the convex optimization problem:

minimize
1

2
kwk2 þ C

XN
i¼1

ðξi þ ξ�i Þ

subject to

8>>>><
>>>>:

Oi − fðxiÞ ⩽εþ ξi

fðxiÞ −Oi ⩽εþ ξ�i
C > 0

ξi; ξ�i ⩾0

ð2Þ

where C = trade-off between the model flatness and the amount up
to which errors larger than ε are tolerated.

It follows that ξi and ξi� are zero only when Oi − fðxiÞ⩽ε and
fðxiÞ −Oi⩽ε, respectively.

The optimization problem can be solved more easily in its dual
optimization form by introducing a dual set of Lagrange multipliers
ðα;α�; η; η�Þ to form the Lagrangian L:

L ¼

8>>>><
>>>>:

1

2
kwk2 þ C

XN
i¼1

ðξi þ ξ�i Þ − C
XN
i¼1

ðηiξi þ ηiξ�i Þ

−P
N
i¼1 αi½εþ ξi −Oi þ fðxiÞ�

−P
N
i¼1 α

�
i ½εþ ξ�i þOi − fðxiÞ�

subject toα;α�; η; η�⩾0 ð3Þ

Optimization is the minimization of L with respect to the primal
variables ðw; ξi; ξ�i Þ and simultaneous maximization with respect to
the Lagrange multipliers. This implies that the solution has a saddle
point, which means that the partial derivatives of L with respect to
the primal variables must be zero for optimality. Substituting these
partial derivatives of L in Eq. (3) yields the reformulated dual opti-
mization problem:

maximize

8>><
>>:

P
N
i¼1 Oiðαi − α�

i Þ − ε
P

N
i¼1ðαi þ α�

i Þ

− 1

2

XN
i¼1

XN
j¼1

ðαi − α�
i Þðαj − α�

jÞφðxiÞ · φðxjÞ

subject to

(P
N
i¼1ðα − α�Þ ¼ 0

α;α� ∈ ½0;C� ð4Þ

Solving the optimization problem allows Eq. (1) to be rewritten
as

fðxÞ ¼
XN
i¼1

ðα − α�ÞφðxiÞ · φðxÞ þ b ð5Þ

The final step is to deal with the unknown φðxÞ. Instead of find-
ing a suitable φðxÞ, because Eqs. (4) and (5) depend only on the dot
products between x, a kernel function kðxi; xjÞ ¼ φðxiÞ · φðxjÞ
can be employed for computational efficiency. Hence, the final
form of the SVR function is

fðxÞ ¼
XN
i¼1

ðαi − α�
i Þkðxi; xÞ þ b ð6Þ

The value of b can be calculated by applying the Karush–Kuhn–
Tucker conditions to the dual optimization problem, during which,
at optimality, the constraints and products between dual variables
are zero (Karush 1939; Kuhn and Tucker 2014).

Each ðxi;OiÞ whose corresponding αi and α�
i are nonzero and

contribute to the SVR function are known as support vectors (SVs).
There are various kernel functions, but this paper adopts the radial
basis function, which is the most commonly used kernel function
and is the best at modeling nonlinear relations (Hsu et al. 2003; Liu
and Lu 2014). The radial basis function kRBF is defined as

kRBFðxi; xÞ ¼ e−γjxi−x2j ð7Þ
where γ = free parameter.

Hyperparameter optimization is conducted to find the optimal
parameters, γ, C and ε, via a 10-fold cross validation exhaustive
grid search in R. The procedure generates the model based on
all possible combinations of γ, C, and ε, where γ ∈ ½2−5; 2−1�,
C ∈ ½1; 16�, and ε ∈ ½0; 1�, in order to find the best combination that
produces the least model error. All training and testing sets are nor-
malized to the range (0,1) before building the SVR model using R
in order for all variables, regardless of their magnitudes, to be
weighted equally (Hsu et al. 2003).

Model Performance

The conventional way to evaluate model performance is to ran-
domly split the data set into separate training, validation, and test-
ing sets. The training set is for fitting the model parameters; the
validation set is for determining the optimal model parameters;
and the testing set is for assessing generalization errors on the final-
ized model using unfamiliar instances (Hastie et al. 2009). Because
the goal in this paper is only to assess how changing the proportion

© ASCE 04017046-4 J. Environ. Eng.
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of extreme-high BODs in a training set affects SVR model perfor-
mance, only the training and testing phases are carried out.

In order to define the critical cutoff for extreme-high BODs—
that is, those subject to systematic underprediction with consis-
tently negative error residuals—first a 10-fold cross validation is
run in which the full data set is randomly split into 10 equal sub-
samples [according to Kohavi (1995), 10 is the optimal number of
folds for a dataset size on the order of hundreds to obtain the
residual errors of prediction outputs]. For the first cycle, a single
subsample is selected as the testing set and the remaining nine form
the training set to evaluate testing performance. For the next 9
cycles, a different subsample is selected as the testing set and the
rest make up the training set. The 10 results are then averaged to
produce a single estimation of model performance using a variety
of metrics (as described subsequently).

To identify the critical cutoff BOD separating the extreme-high
values from the rest, all residual errors obtained from the 10-fold
cross validation are arranged in ascending order of BOD. Positive
(negative) residual errors are then denoted þ1ð−1Þ. The assigned
values can be separated into two clusters, one for the lower range of
BODs and the other for the upper range, and the mean assigned
values for each cluster are calculated. The cutoff value is identified
by finding the cluster size that produces the largest mean difference
between the two clusters.

The analysis begins by splitting the full data set randomly, with
∼80% (528 instances) of the values reserved for training and ∼20%
(130 instances) reserved for testing. The proportion of extreme-high
BODs in both training and testing data sets is approximately the
same as that in the full data set, with the proportion of extreme-high
values accounting for 3.6% of the full data set, 3.0% of the training
set, and 6.1% of the testing set. To test the hypothesis that raising the
proportion of extremely high values in the training set increases their
weighting in the model, which in turn mitigates systematic under-
prediction, the training set is modified by increasing the proportion
of extreme-high values in the training set. Two novel methods are
used to evaluate this approach. The first method, bootstrapping, first
randomly selects and deletes BODs below the threshold value of
150 mgL−1 before duplicating an equal number of BODs above
the threshold value to maintain the size of the training set while in-
creasing the proportion of extreme-high values. Duplication is re-
peated to increase the proportion of extreme-high values to ∼10,
∼20, ∼30, ∼40, and ∼50% of the training set. For each proportion
of extreme-high values, bootstrapping is carried out 10 times to form
10 new random data sets. Ten models are built for each training set,
and the average performance of all 10 is then evaluated.

The second method is simple data expansion, for which BODs
above the threshold value are duplicated and then added back into
the training set without deleting nonextreme values. Consequently,
the size of the training set increases. With this approach, five new
data sets are created for which the proportions of extreme-high val-
ues are ∼10, ∼20, ∼30, ∼40, and ∼50% of the total size of the
data set.

Despite the different training sets used to build the models, hy-
perparameter optimization is conducted only once on the entire data
set of 658 instances and the same set of obtained optimal param-
eters is applied to build all models. This is because, first, the focus
is on evaluating the effectiveness of both methods in mitigating
systematic underprediction for extreme-high values in general, not
on building the best model for each training set. Second, the focus
is not determining which method is better but whether both meth-
ods work. Hence, it is sufficient to use the same set of optimal
parameters to build approximately optimal models.

All models built for these 10 new data sets are evaluated with
four criteria: (1) mean relative absolute error (MAE), (2) bias,

(3) coefficient of determination (R2), and (4) Nash–Sutcliffe effi-
ciency (NSE). The MAE measures the mean of the magnitudes of
all residual errors between the modeled (yi) and observed (Oi) val-
ues of the dependent variable (BOD). Bias represents the mean of
all residual errors (Liu and Lu 2014), indicating the extent to which
the modeled values overestimate or underestimate the dependent
variable. The R2 (of regression) measures the percentage of data
variability explained by the modeled values and the goodness of
fit, ranging 0 to 1 (zero correlation to a perfect match between the
modeled and observed values). The NSE (Nash and Sutcliffe 1970)
is a variance-normalized statistic measuring how close the modeled
and observed values are. An NSE value of 1 corresponds to a per-
fect match between the modeled and observed values; a value of 0
indicates that the model predictions are as accurate as the mean of
observed values. A negative NSE value indicates that the model is
predicting worse than than if the mean of observed values were
used. The mathematical formulas for the four assessment metrics
are not reproduced in this paper because they can be found in the
modeling literature (e.g., Liu and Lu 2014).

Results

Systematic Underprediction and Critical Cutoff BOD of
Extreme-High Values

The 10-fold cross validation grid search on the full data set of 658
instances yields the following optimal model parameters: γ ¼ 0.03,
C ¼ 4, and ε ¼ 0.04. Using the previously described method, the
critical cutoff BOD is identified to be 150 mgL−1. From Table 2
and Fig. 2, although the high R2 of 0.68 and positive NSE of 0.66
for the full data set indicate that the SVR’s performance is adequate,
there are modeled values falling well below the observed values
at the extreme-high end of the range. Such underprediction does
not affect nonextreme values, as is evident from the positive bias,
high R2, and positive NSE for values <150 mgL−1. This pattern

Table 2. Statistics of 10-Fold Cross Validation of SVR Models Using the
Full Data Set of 658 Values

Statistic
All
BOD

Nonextreme-high BOD
(<150 mgL−1)

Extreme-high BOD
(⩾150 mgL−1)

MAE 16.90 13.91 96.11
Bias 0.66 4.33 −96.11
R2 0.66 0.76 0.08
NSE 0.66 0.74 −1.54
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Fig. 2. Plot of observed versus SVR-modeled BODs from 10-fold
cross validation using the full data set of 658 values
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represents a systematic underprediction for extreme-high values at
a threshold value of approximately 150 mgL−1.

Only 3.6% of the BODs in the full data set are greater than the
150-mg L−1 threshold value. Ranging 150–500 mgL−1, they cover
70% of the entire range of observed values (1–500 mgL−1).

Model Characteristics

For each model, the instances used in both training and testing sets
and those belonging to extreme-high BODs are tabulated in Table 3.
Table 4 shows the number and distribution of SVs and the sums of
SVs α and α� (

P
α and

P
α�) falling in the nonextreme and ex-

treme-high ranges. The frequency distributions of SVs for all mod-
els are plotted in Fig. 3. For the bootstrapping approach, for each
proportion of extreme-high values in the training set, the SVs α and
α� from all 10 models are added together (Table 4). The majority of
SVs with nonzero α ðα�Þ correspond to the extreme-high (nonext-
reme) values.

Model Performance

According to Table 5, with an increasing proportion of extreme-
high BODs in the training set, the bootstrapping and data expansion
methods lead to a less negative bias in model performance on

training sets for all BODs but to an increase in MAE. Other metrics
such as R2 and NSE remain relatively constant. This is associated
with a more positive bias for nonextreme values and a less negative
bias in performance for extreme-high values.

The final evaluation of the two methods is based on performance
in the testing phase as shown in Table 6 and Fig. 4. Model perfor-
mance for the extreme-high values generally increase as the propor-
tion of high values increases from 3 to ∼30–40%, where the
systematic underprediction problem for extreme-high values is re-
solved, although there are some disagreements among metrics. For
the bootstrapping approach, R2 for extreme-high values peaks
at 0.28 when the proportion of high values is ∼20%. Bias and
NSE improve by approaching zero at ∼40%. Also, the MAE con-
tinues to decrease until the proportion of high values reaches ∼40%.
Almost identical results are observed for the data expansion
method.

Such improvement in the prediction of extreme-high values oc-
curs at the slight expense of accurate prediction of nonextreme val-
ues (<150 mgL−1). For both bootstrapping and data expansion, R2

for nonextreme values decreases from 0.69 to 0.65 when the pro-
portion of extreme-high values is adjusted to ∼20%. In addition, the
corresponding MAE and bias increased and NSE turned negative as
the proportion of high values increased.

Table 3. BOD Statistics in Training and Testing Sets Generated by the Investigated Bootstrapping and Data Expansion Methods, with the Percentage of
Extreme-High BODs Being in the Original Dataset Being 3%

Extreme-high BODs in
training set (approximate %)

Instances in
training set

Extreme-high BODs in
training set (⩾150 mgL−1)

Instances in
testing set

Extreme-high BODs in
testing set (⩾150mgL−1)

3 528 16 130 8

Bootstrapping
9.1 (∼10) 528 48 130 8
21.2 (∼20) 528 112 130 8
30.3 (∼30) 528 160 130 8
39.4 (∼40) 528 208 130 8
51.5 (∼50) 528 272 130 8

Data expansion
11.1 (∼10) 576 64 130 8
20.0 (∼20) 640 128 130 8
30.4 (∼30) 736 224 130 8
39.6 (∼40) 848 336 130 8
50.0 (∼50) 1024 512 130 8

Table 4. SV Statistics in Nonextreme-High and Extreme-High BOD Range across Percentages of Extreme-High BODs in the Training Set for the Investigated
Methods

Percentage

Nonextreme-high BODs (⩾150 mgL−1) Extreme-high BODs (⩾150 mgL−1)

P
α

P
α�

SVs with
nonzero α

SVs with
nonzero α� P

α
P

α�
SVs with
nonzero α

SVs with
nonzero α�

3 146 208 44 61 62 0 16 0

Bootstrapping
∼10 1,106 2,574 343 723 1,468 0 389 0
∼20 858 3,342 295 919 2,484 0 647 0
∼30 795 3,727 268 1,005 3,017 85 776 32
∼40 718 3,877 239 1,034 3,495 336 897 99
∼50 759 4,043 234 1,067 4,029 744 1,038 211

Data expansion
∼10 106 289 33 79 183 0 48 0
∼20 103 393 33 110 290 0 75 0
∼30 110 502 36 135 402 10 103 4
∼40 130 620 41 161 541 50 137 14
∼50 183 797 51 207 734 120 192 35
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In terms of R2, the effect of adjusting the proportion of extreme-
high values on testing performance for all BODs is not large for
either method. For all BODs, R2 decreases slightly (0.71 to
0.68) as the proportion of high values reaches ∼20%. Substantial
changes are observed for other metrics, where the corresponding
MAE and bias increase and the NSE decreases as the extreme-high
value proportion increases to 30%. Despite the changes in MAE

and bias, indicating worsening model performance, the high R2

and positive NSE of >0.3 for the proportion of ∼3–40% illustrates
that the model’s predictive capability for all BODs is still robust.

For both methods, the best performances (in terms of MAE and
bias) in predicting extreme-high values results from increasing the
proportion of extreme-high values in the training set to ∼30–40%.
Increases above ∼40% cause model performance to decrease.

Fig. 3. Frequency distributions of model SVs generated across different percentages of extreme-high BODs in the training set using the investigated
methods; the distribution of SVs with α ≠ 0 (α� ≠ 0) is indicated by gray bars; observed BOD of 150 mgL−1 is indicated by dashed lines

Table 5. Training-Phase Model Performances for All BODs, Nonextreme-High BODs, and Extreme-High BODs across Percentages of Extreme-High BODs
in the Training Set Generated by the Investigated Bootstrapping and Data Expansion Methods, with the Percentage of Extreme-High BODs Being in the
Original Data Set Being 3%

Percentage

All BODs Nonextreme-high BODs (⩾150 mgL−1) Extreme-high BODs (⩾150 mgL−1)
MAE Bias R2 NSE MAE Bias R2 NSE MAE Bias R2 NSE

3 14.73 1.02 0.71 0.70 12.30 3.94 0.83 0.82 92.50 −92.50 0.01 −1.31
Bootstrapping

∼10 18.46 −1.88 0.66 0.66 13.02 5.18 0.81 0.77 72.83 −72.42 0.02 −0.93
∼20 24.44 −5.68 0.68 0.67 16.06 7.26 0.78 0.60 55.55 −53.71 0.07 −0.41
∼30 28.16 −5.92 0.68 0.68 19.00 9.98 0.77 0.45 49.23 −42.50 0.11 −0.19
∼40 30.81 −6.25 0.69 0.68 22.01 12.70 0.77 0.27 44.35 −35.41 0.17 −0.01
∼50 33.13 −2.64 0.72 0.71 29.21 19.88 0.73 −0.26 36.82 −23.83 0.42 0.31

Data expansion
∼10 19.32 −2.90 0.67 0.66 13.15 5.32 0.81 0.75 68.67 −68.67 0.02 −0.81
∼20 23.80 −5.19 0.68 0.67 15.83 7.07 0.79 0.62 55.69 −54.23 0.07 −0.42
∼30 27.81 −6.24 0.69 0.68 18.72 9.53 0.77 0.47 48.61 −42.27 0.10 −0.18
∼40 30.50 −6.18 0.69 0.68 22.04 12.54 0.76 0.26 43.39 −34.70 0.18 0.00
∼50 32.70 −1.48 0.73 0.72 29.03 18.76 0.71 −0.24 36.37 −21.72 0.43 0.33
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Discussion

Analysis of Systematic Underprediction

Two important questions arising from the results are addressed in
this section. The first is why the data sets investigated in this paper
are affected by systematic underprediction for extreme-high values.

The second question is why systematic underprediction, instead of
overprediction, occurs for the extreme-high values.

The answers to both questions lie in the distribution of observed
BODs, the SVs in the model generated using the original uncor-
rected training set, and the kernel function kRBF. In the results, a
relatively small number of extreme-high BODs (3.6%) are sparsely
distributed over the upper 70% of the data range. Moreover, from

Table 6. Testing-Phase Model Performances for All BODs, Nonextreme-High BODs, and Extreme-High BODs across Percentages of Extreme-High BODs
in the Training Set Generated by the Investigated Bootstrapping and Data Expansion Methods, with the Percentage of Extreme-High BODs Being in the
Original Data Set Being 3%

Percentage

All BODs

Bias R2 NSE

Nonextreme-high BODs (<150 mgL−1) Extreme-high BODs (⩾150 mgL−1)
MAE MAE Bias R2 NSE MAE Bias R2 NSE

3 19.91 0.73 0.71 0.71 16.67 5.30 0.69 0.63 69.27 −69.01 0.24 −1.12
Bootstrapping

∼10 20.56 5.00 0.68 0.64 18.09 7.95 0.64 0.42 58.19 −39.96 0.25 −0.61
∼20 24.96 11.17 0.68 0.49 22.81 12.84 0.65 0.02 57.78 −14.42 0.28 −0.38
∼30 28.76 15.48 0.68 0.41 27.16 17.09 0.66 −0.17 53.14 −9.09 0.25 −0.13
∼40 32.70 19.53 0.66 0.32 31.47 21.31 0.67 −0.40 51.40 −7.65 0.21 −0.04
∼50 41.26 27.98 0.62 0.04 40.49 29.76 0.65 −1.03 52.97 0.77 0.12 −0.04

Data expansion
∼10 21.23 6.12 0.68 0.61 18.81 8.78 0.64 0.34 58.15 −34.47 0.25 −0.52
∼20 24.60 10.63 0.68 0.50 22.5 12.3 0.65 0.05 56.64 −14.76 0.29 −0.34
∼30 28.37 14.67 0.68 0.43 26.75 16.31 0.67 −0.14 53.16 −10.36 0.26 −0.09
∼40 32.97 19.08 0.67 0.34 31.74 20.96 0.68 −0.36 51.64 −9.53 0.21 0.00
∼50 41.10 25.62 0.61 0.07 40.27 27.6 0.64 −0.96 53.82 −4.63 0.09 −0.06

Fig. 4. Plots of observed versus modeled BODs based on model performance in the testing phase across percentages of extreme-high BODs in the
training set using the investigated methods; the diagonal line is the 1∶1 line

© ASCE 04017046-8 J. Environ. Eng.
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Fig. 3(a) and Table 4, it is seen that all SVs in the extreme-high
range are associated with nonzero α instead of nonzero α�. The
SVR function in Eq. (6) shows that the modeled BOD is the
sum of all products between α (or −α�) and kRBF. From
Eq. (7), kRBF is shown to be an exponential function that measures
the extent of similarity between two sets of input data x and xi, in
which xi corresponds to a given support vector. When x and xi are
more similar (dissimilar), kRBF is larger (smaller) (i.e., identical x
and xi lead to kRBF ¼ 1, whereas dissimilar x and xi lead to
kRBF → 0). It follows that only terms with nonzero α (α�) increase
(decrease) the modeled BOD. The variable kRBF can be seen as giv-
ing more (less) weight to αi or −α�

i when x is more (less) similar to
the xi that corresponds to αi or α�

i for a given i. Now consider a
given x that corresponds to a extreme-high BOD and is “fed” into
the model. Because x is more similar to xi in SVs with nonzero α
lying in the extreme-high range than is xi of SVs lying in the non-
extreme range, and because no SVs with nonzero α� exist in the
extreme-high range, the modeled BOD for that x is generally
greater than of other x corresponding to the nonextreme range.
However, because the SVs are sparsely distributed throughout
the extreme-high range, kRBF is not sufficiently large to place ad-
equate weights on all SVs falling in the extreme-high range when
predicting extreme-high values.

In other words, the sum of products between nonzero α and
kRBF is insufficient to increase a given modeled value (supposedly
belonging to the extreme-high range) close to an accurate value,
thereby causing the systematic underprediction in this case. This
is also to say that systematic overprediction for extreme-high values
does not occur for such data sets. In contrast, Fig. 3 and Table 4
indicate that the proportions of SVs associated with nonzero α and
α� falling in the nonextreme range are more balanced and these
SVs are densely distributed. Thus, there are sufficient SVs of each
type similar enough to a given x corresponding to the nonextreme
range such that nonextreme modeled values are not subject to sys-
tematic under- or overprediction. Therefore, it can be understood
that the SVR algorithmically reduces (increases) the prediction er-
ror of dependent variables using x when there are more (fewer)
training instances and SVs within a immediate region of input
space surrounding x.

With respect to studies that reported systematic underprediction
affecting peak values (e.g., Balfer and Bajorath 2015; Garsole and
Rajurkar 2015; Granata et al. 2016), this study was unable to access
their data sets to determine their data distributions and verify the
causes of underprediction. Nevertheless, the problem of underpre-
diction affecting extreme-high dependent values is present in the
modeling results of these studies, which corroborate the observa-
tion here that only underprediction is present in the prediction of
extreme-high values.

Analysis of Model Performance

The results in this study support the hypothesis that more training
instances with extreme-high BODs allow the SVR algorithm to
mitigate systematic underprediction and reduce the error for
extreme-high values, which leads to better model prediction for ex-
treme-high values. As shown by the testing performance results in
Table 6, negative bias is reduced, with MAE decreasing up to
∼25%. This is accompanied by a trade-off between a lower propor-
tion of nonextreme values that result in greater error tolerance
and worsened model prediction for nonextreme values, and a more
positive bias and increases in MAE up to ∼90%. At the same time,
model performance for the entire BOD testing set worsens with a
more positive bias and higher MAE because of a greater proportion
of nonextreme values than extreme-high values in the testing set.

The explanation for the mitigation of systematic underpre-
diction and error reduction for extreme-high values lies in the
Lagrangian problem stated in Eq. (4). From its first termP

N
i¼1 Oiðαi − α�

i Þ, to maximize the function, given that either
αi or α�

i can be nonzero for a given i, most nonzero αi (α�
i ) are

associated with large (small) observed valuesOi. When the propor-
tion of extreme-high values in the training set increases, more SVs
with nonzero α falling in the extreme-high range are part of the
model. This is consistent with Table 4 and Fig. 3. More SVs with
nonzero α can sufficiently increase the modeled value (supposedly
belonging to the extreme-high range) close to an accurate value,
thereby mitigating systematic underprediction and reducing the er-
ror. At the same time, although there are also more SVs with non-
zero α� [following from the constraint

P
N
i¼1ðα − α�Þ ¼ 0 in

Eq. (4)], they mostly fall in the lower end of the nonextreme range,
far enough from the extreme-high range not to negate the effect
of nonzero α in the extreme-high range (recall the characteristics
of kRBF). The explanation is consistent with the observed increase
in SVs with nonzero α in the nonextreme range and SVs with non-
zero α� in the extreme-high range, with the increasing proportion of
extreme-high values making up the training set (Fig. 3).

It is interesting to observe the more positive bias and greater
error for nonextreme values with the proportion of extreme-high
values in the training set despite the increase in SVs with nonzero
α� in the nonextreme range. It is observed from both training and
testing phases that more frequent overprediction occurs at the upper
end (75–150 mgL−1) than at the lower end (1–75 mg L−1) of the
nonextreme range; also, overprediction becomes more frequent
with the greater proportion of extreme-high values in the training
set (Tables 5 and 6 and Fig. 4). This implies that modeled values in
the 75–150 mgL−1 range are mainly responsible for the positive
bias, the reason being that the majority of SVs with nonzero α
lie in the 1–75 mgL−1 range and that their nonzero α are given
less weight when predicting for those x supposedly corresponding
to the 75–150 mgL−1 range compared with those x supposedly
corresponding to the 1–75 mgL−1 range. Coupled with the fact that
the 75–150 mgL−1 range, rather than the 0.5–75 mgL−1 range, is
close to the extreme-high range where most SVs with nonzero α are
found, overprediction occurs more frequently at the upper end than
the lower end of the nonextreme range. Given that systematic
underprediction does not occur for the 1–75 mgL−1 range even
though that is where most nonzero α� are located, it must follow
that overprediction tends to occur in the 75–150 mgL−1 range,
which consequently results in a positive bias for the entire nonext-
reme range (1–150 mgL−1). With a higher proportion of extreme-
high values in the training set and more SVs in the extreme-high
range being included in the SVR function, more frequent overpre-
diction in the 75–150 mgL−1 range occurs, which leads to a more
positive bias and greater error for the nonextreme range. Never-
theless, predictions in the 75–150 mgL−1 range are not consis-
tently overestimated and this cannot be classified as systematic
overprediction.

In addition, for both methods it is observed that testing perfor-
mance in terms of MAE for extreme-high values peak when the
proportion of extreme-high values increases to ∼40%. Conversely,
training performance continuously improves with the increasing
proportion of extreme-high values (Table 5). These observations
indicate that the SVR algorithm overfits for extreme-high values.
Having more replicated extreme-high values above a certain thresh-
old for the SVR algorithm to learn leads to improved training
performance but poor generalization ability that subsequently
worsens testing performance for the entire BOD range (Liu and
Lu 2014).

© ASCE 04017046-9 J. Environ. Eng.
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Limitation and Future Research

One limitation of this study is that, when the relatively small data
set sample is partitioned into training and testing sets, there are only
eight testing instances of extreme-high BODs in the latter. This
small number prevents more accurate interpretations of testing per-
formance, particularly in terms of R2. Further research on larger
data sets with more extreme-high values will be useful to (re)evalu-
ate these findings. Currently, the full data set is split only once: one
training set and one testing set. Future research should look at other
means of cross validation that this paper does not explore—For
example, k-fold cross validation, which generates k random train-
ing and testing data sets, thus. maximizing the small data sets avail-
able for training and testing by producing more prediction outputs
for extreme-high values. Finally, further research might investigate
how changing the kernel function influences the effectiveness of
the proposed methods. It should also consider which of the two
methods, bootstrapping and data expansion, is better at hyperpara-
meter optimization on every training set and compare their effec-
tiveness in SVR and other regression techniques.

In practice, individuals tasked with long-term monitoring of
water quality should be aware that the rarity of extreme-high values
hinders the development of regression models that accurately pre-
dict values for both extreme-high and nonextreme values. They
should therefore collect additional data (if possible) during periods
when the extreme-high values occur. Ideally, these additional data
will be collected at different times when the values of other vari-
ables used to build the model are different. However, replicates col-
lected during the same period will be useful in building a prediction
model or even serving as backups if an accurate reading cannot be
made for the primary sample.

Conclusion

This study sought to mitigate the systematic underprediction of
SVR models used for filling in missing extreme-high BODs by
introducing bootstrapping and data expansion methods to increase

the proportion of extreme-high values in the training set. For the
water quality data set of Yuen Long Creek, Hong Kong, it is
found that a systematic underprediction is present for extreme-
high BODs of >150 mgL−1, where such extreme-high values
and their SVs are sparsely scattered over most (∼70%) of the
BOD range in the full data set. The two methods are successful
in mitigating systematic underprediction in extreme-high values
and in reducing residual errors by up to ∼25% as the proportion
of extreme-high values in the training set increases to ∼40%.
These improvements come with a slight worsening of overall
model performance, but this negative aspect is tolerable because
the extreme-high values are often the missing ones in typical
hydrological data sets.

Appendix. BOD Time Series

This appendix contains BODs for the four water quality monitoring
points (YL1, YL2, YL3, and YL4) recorded over the period
2000–2014. They are presented as a time series plot in Fig. 5.
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