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Floods, false hope, and the future
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Recent flooding in Asia has drawn worldwide attention (DFO, 2012).
Floods in Pakistan in late July 2010 inundated one-fifth of the country,
killed nearly 2000 people, and disrupted the livelihoods of about 20 million
others. Heavy rains causing flooding throughout the 2010 monsoon period
killed several thousand in China, many from rain-associated landslides. By
the end of August, more than 15 million people had been evacuated from
flood and landslide danger zones. Again in 2011, widespread floods caused
catastrophic damage in nearly all Southeast Asian countries, including
Thailand, Cambodia, Laos, Malaysia, Myanmar, and the Philippines
(DFO, 2012).

The October-November 2011 flooding of the Chao Phraya River in
Thailand was labeled the country’s worst since 1942, when flood waters
inundated much of Bangkok for more than 3 months (The World Bank,
2010; The Bangkok Post, 2011). Uncharacteristically, high rainfall and
water management errors are believed to have exacerbated the estimated US
$45 billion in damage, the loss of more than 500 lives, and the disruption of
the livelihoods of millions of people caused by the flood (The World Bank,
2011). To some, the flood was hard evidence of a changing climate, one that
will ultimately produce dramatic increases in rainfall, stream flow, and sea
level — changes that will certainly bring more flooding (START, 2011).

One plausible consequence of global warming is acceleration of the
hydrological cycle, which is simply the balance among global evapotrans-
piration, rainfall, surface runoff, and storage (Ziegler et al., 2003).
Acceleration may increase the frequency and/or intensity of extreme
events, which occur annually throughout monsoon Asia. However, most
credible advocates of climate change are careful not to draw direct links
between contemporary extreme events and climate change (Huntington,
2010). At spatial scales relevant to catastrophic flooding, such as that
witnessed in 2011, acceleration in hydrological cycle components cannot
yet be verified with certainty (Ziegler et al., 2003, 2005). With respect
to extreme events, the most sophisticated prediction models can only
provide approximations of what might occur in the future (Karl and
Trenberth, 2003).

Tropical monsoon areas are a paradox in that annual excesses of
streamflow often are accompanied by dry breaks in rainfall extending
2-4months. Two competing goals therefore complicate water manage-
ment: (i) maximizing water availability in the dry season; and (ii)
minimizing flooding in the wet season — particularly late in the year in
Southeast Asia when tropical storms from the South China Sea are most
frequent (Lebel et al., 2011). Maintaining sufficient [empty] storage
capacity in dual-purpose reservoirs as a safeguard against unpredictable
late-season storms equates to a significant reduction of water available for
dry season irrigation and commercial use. In the case of the Bhumipol and
Sirikit dams, each located on major tributaries of the Chao Phraya River
(Figure 1d), the volume of water needed to reduce flood risk is nearly 7
billion m> (RID, 2011).
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Complicating reservoir management in 2011 was an
unusual La Nina event that produced higher-than-
normal rainfall in the northern highland regions of
Thailand early in the monsoon season (IRI, 2011; The
Bangkok Post, 2011). The January-October rainfall
in the entire basin surpassed that of prior years
(Figure 1b,d). Rainfall in the north was particularly
high at 2.6 standard deviations above the mean. In
particular, the month of May had a rainfall anomaly
three standard deviations higher than the mean
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Figure 1. (A) Map of Thailand showing the Chao Phraya River sub-
catchments that contributed to the large-scale flooding in late 2011. The
blue lines represent the Chao Phraya River and four main upland
tributaries. The brown and green areas correspond to the upper and
lower sub-basin considered in this rainfall analysis. (B) January-October
(yearly) rainfall for the entire Chao Phraya catchment (blue bars).
Annual rainfall anomalies (represented as standard deviations from the
mean rainfall), determined from the 14-year TRMM satellite archive
(NASA, 2012) for the upper (brown line) and lower (green line)
sub-catchments. Rainfall in 2011 was 10% higher than the second
highest year on record. (C) 2011 monthly rainfall for the entire catchment
(bars); and upper basin and lower basin monthly rainfall anomalies. The
highest rainfall anomalies occurred in May when the total depth
comprised 24% of the January—October total. (D) Map of the 2011
January-October rainfall anomaly in Thailand. The aggregated
anomaly in the northern region upstream of the Bhumipol and Sirikit
dams (circles) was 1.6 standard deviations above the mean
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(Figure 1c). Early season wetting likely increased the
proportion of subsequent rainfall that was converted
quickly into storm runoff. By the time large storms such
as Nock-Ten and Muifa occurred in late July 2011, both
reservoirs had surpassed a conservative threshold
storage level for safeguarding against the floods that
were triggered by higher than normal rainfall in
August and September.

Severe floods on the Chao Phraya River occur about
once every 15-20 years — three in the last decade [The
Bangkok Post, 2011]. Bangkok’s location on floodplains
where natural waterways and wetlands have been
drained, filled, and replaced with urban structures
makes the city vulnerable to flooding (Engkagul, 1993).
Excessive pumping of groundwater has caused severe
subsidence in some areas in and around the capital
(Phien-wej et al., 2006), increasing the likelihood of
local flooding and hindering storm runoff. High tides
also slow the drainage of flood waters from inundated
areas. The tidal influence on the Chao Phraya River
extends more than 150 km upstream of Bangkok, past
the historical capital of Ayutthaya to an area that
is historically flood prone. Following large floods in
1983, 1995, and 2006, the Thai government invested
heavily in extensive dike systems, pumping stations,
underground drainage tunnels, retention ponds, and a
state-of-the-art flood forecasting and warning system
(Vitoonpanyakij, 2009; The World Bank, 2010).
Although these measures have the potential to reduce
flood damages under most circumstances, they were
insufficient in 2011. New promises now being made
about engineering a safer future also may fail (The
Wall Street Journal, 2011).

Flood devastation such as in Thailand in 2011, or
throughout southern Asia in prior years, is not simply
the result of extreme rainfall and poor reservoir
management. It results from failure to prepare for
recurrent floods (Ziegler et al., 2012). Each year, the
number of people living in flood prone areas increases.
For example, 150 million people now live on the Ganges
Delta in Bangladesh where recurrent floods — nearly 20
in the last century - kill thousands of people and
destroy millions of homes (Mallick et al., 2005). The
unfortunate location and continued development of
large population centers in flood-prone areas means
that catastrophic flooding will certainly reoccur unless
we address key economic, social, and political issues
that force some people, and allow others, to inhabit
areas of high environmental risk. This point is well
known for all types of hazards, but this process is slow
or even ignored (UNESCO, 2007; Ziegler et al., 2009;
Lebel et al., 2011; Mens et al., 2011). Meanwhile, we
cling to the false hope that technological advances
will protect us in the future (EEPSEA, 2010).

We might not be able to move cities, but we could
redesign them to make space for water so that the
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natural processes of flooding occur with minimized
damage. This could be done through ‘green’ engineer-
ing solutions and more holistic catchment-wide flood
management, which includes supportive policies, a
regulatory framework, incentive systems, and public
participation (DEFRA, 2004; FAO, 2005; Lebel et al.,
2011; Ziegler et al., 2012). It also would require
avoiding uncontrolled development within at-risk
areas and relocating those living in high-risk areas.
Metropolitan areas located on higher grounds could
then be linked via appropriate transportation systems
engineered through potential inundation zones. This
approach is more realistic in the long run than Noah’s
Ark type solutions such as expanding continental-scale
flood water drainage systems, building cascades of
dual-purpose dams, or constructing higher dikes. Such
short-term engineering solutions are potentially dan-
gerous because as people grow complacent when small
disasters are avoided, they become more vulnerable to
catastrophic events (Newell and Wasson, 2002). This
development approach also would serve a dual purpose
of helping coastal cities combat sea-level rise, another
major environmental problem facing many populated
areas worldwide.
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